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Abstract

Background: Nationally representative tuberculosis (TB) prevalence surveys provide

invaluable empirical measurements of TB burden but are a massive and complex under-

taking. Therefore, methods that capitalize on data from these surveys are both attractive

and imperative. The aim of this study was to use existing TB prevalence estimates to

develop and validate an ecological predictive statistical model to indirectly estimate TB

prevalence in low- and middle-income countries without survey data.

Methods: We included national and subnational estimates from 30 nationally representa-

tive surveys and 2 district-level surveys in India, resulting in 50 data points for model

development (training set). Ecological predictors included TB notification and program-

matic data, co-morbidities and socio-environmental factors extracted from online data

repositories. A random-effects multivariable binomial regression model was developed

using the training set and was used to predict bacteriologically confirmed TB prevalence

in 63 low- and middle-income countries across Africa and Asia in 2015.

Results: Out of the 111 ecological predictors considered, 14 were retained for model

building (due to incompleteness or collinearity). The final model retained for predictions

included five predictors: continent, percentage retreated cases out of all notified, all

forms TB notification rates per 100 000 population, population density and proportion of

the population under the age of 15. Cross-fold validations in the training set showed very

good average fit (R-sq¼0.92).

Conclusion: Predictive ecological modelling is a useful complementary approach to indi-

rectly estimating TB burden and can be considered alongside other methods in countries

with limited robust empirical measurements of TB among the general population.

Key words: predictive ecological modelling, TB prevalence, modelling, predictions, TB prevalence surveys, subna-

tional estimates
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Background

Tuberculosis (TB) is a major global health problem and a

leading cause of death worldwide alongside the human im-

munodeficiency virus (HIV). According to the latest esti-

mates, in 2016, 10.4 million people fell ill with TB and

1.3 million people succumbed to the disease.1 The

Sustainable Development Goals (SDGs) for 2030 reflect

the scale of the epidemic and its importance as a global pri-

ority—one of the health targets (Goal 3) is to end the TB

epidemic worldwide.2 More specifically, the WHO End TB

Strategy calls for a 95% reduction in TB deaths and a 90%

reduction in the TB incidence rate by 2035 compared with

2015.3

Routine and reliable data to monitor time trends in TB

disease burden are indispensable to ensure that the right

strategies are put in place to achieve these goals and to

monitor and evaluate progress towards targets. Although

the data available to estimate TB disease burden improved

considerably during the millenium development goals era,

some data gaps remain, especially in countries with low

levels of access to care, weak surveillance and no vital reg-

istration systems. The most readily accessible routine data

informing TB burden estimation are surveillance data on

TB case notifications, compiled annually by all national

TB control programmes. Whilst the wealth of data pro-

duced by TB control programmes can and should be used

at national and subnational levels for planning purposes,

they do not lend themselves well to cross-country compari-

sons. Indeed, the subnationally disaggregated notification

data are essential to support rational resource allocation

and to ensure that right mix of interventions are put in

place. However, since levels of under-reporting and under-

diagnosis differ from country to country (and are mostly

unknown), notification data are usually not robust or

stable enough over time to monitor global trends towards

the elimination of the TB epidemic. Most notably,

increases in the share of services provided by the private

sector can have a great impact on notifications (e.g. if data

are no longer notified to the national TB control pro-

grammes) without having any impact on TB burden.

The End TB Strategy relies primarily on two global TB

disease burden indicators, namely the TB incidence rate

and the absolute number of TB deaths.3 Whilst TB preva-

lence is no longer a global indicator per se, prevalence sur-

veys remain an invaluable empirical measurement to

inform estimations of incidence and, in some cases, mortal-

ity.4 Direct measurements of TB incidence require that TB

notifications are reliable proxies, whereas direct measure-

ments of TB mortality require fully functioning vital regis-

tration systems. Where that is not the case, estimates of TB

prevalence can help to estimate the level of under-

reporting and under-diagnosis of detected TB cases and

guide adjustments to estimate TB incidence. In turn, mor-

tality can be derived indirectly from incidence and case fa-

tality ratios.

The gold standard for the estimation of TB prevalence

consists of nationally representative population-based sur-

veys, as they are the only methodology that can provide pre-

cise and unbiased estimates of TB prevalence among

surveyed populations.5 TB prevalence surveys are a massive

and complex undertaking, with serious demands on available

in-country technical resources and financial implications.6

Therefore, methods and applications that capitalize on data

from these surveys to strengthen global monitoring and eval-

uation efforts are not only attractive, but also imperative.

Examples of such methods include mathematical or statisti-

cal predictive models to estimate TB in non-surveyed loca-

tions or to make future forecasts. Country-level predictions

Key Messages

• Population-based surveys are the gold standard to estimate TB prevalence. These are massive and complex undertak-

ings, so it is important to make the most out data from these surveys.

• One possible application is to use national and subnational TB prevalence estimates to build a predictive ecological

model to predict TB prevalence in countries without survey estimates. This is especially useful for countries with a

high burden of TB and low case-detection rates, where TB notification data cannot be used directly as a measure of

TB burden.

• We compiled a database including all existing TB prevalence survey estimates and ecological predictors for 30 countries

and fitted a random-effects multivariable binomial regression model to predict TB prevalence in 63 other low- and mid-

dle-income countries without survey data and with an estimated prevalence over 0.1% according to WHO estimates.

• We were able to develop a predictive ecological model for TB prevalence with reasonable internal and external valid-

ity. We therefore concluded that this method can provide useful complementary estimates for TB prevalence and can

be considered alongside other methods in countries with limited TB data.
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of TB have traditionally relied on forecasting from time series

of notification data,7–16 with the caveat that these data tend

to reflect access to services rather than disease burden, which

may not be the same, especially in countries with low case-

detection rates. More recently, a number of TB burden

prediction models have been developed, which aim to cir-

cumvent this issue and rely, amongst other data, on data

from TB prevalence surveys as input data. These include

both mathematical models (deterministic compartmental

models or individual-based stochastic)17 and Bayesian meta-

regression models,18 which can simultaneously estimate TB

mortality, incidence and prevalence.

Predictive ecological modelling using TB prevalence as

input data represents one other possible avenue to predict

TB burden and to make maximum use of existing TB

prevalence surveys. Whereas ecological models are very

commonly used in epidemiology, they are usually descrip-

tive and explanatory and rarely predictive. An ecological

predictive model for TB prevalence offers the possibility to

predict prevalence by making use of existing survey data in

combination with both TB and non-TB-related informa-

tion at national and subnational (when possible) levels. TB

burden estimates that are not purely dependent on TB data

are attractive, as they are less vulnerable to issues of data

completeness and bias, which can permeate all TB data in

a given country.

The purpose of this study was therefore to explore the

feasibility and reliability of predictive ecological modelling

to predict prevalence in low- and middle-income countries

without national representative TB surveys for countries

with an estimated prevalence over 0.1% according to

WHO estimates.The relationship between national and

(where possible) subnational TB prevalence levels vs TB

notification and programmatic data, co-morbidities

and socio-environmental factors—in countries where TB

prevalence surveys were conducted—was used to predict

prevalence in countries where no prevalence surveys were

conducted.

Methods

Database compilation

The first step in database compilation was the definition of

countries as part of the training set (i.e. whose data are is

used to define the predictive equation) and countries for

which prevalence was to be estimated.19 The complete train-

ing set initially included all countries where prevalence sur-

veys have been conducted between 1990 and 2015. This

included national estimates for 22 countries in which na-

tionally representative surveys were conducted, subnational

estimates of an additional eight nationally representative

surveys and three district-level surveys in India (Table 1,

Figure 1). A thorough review of survey methodologies and

results led to the exclusion of three surveys from the initial

training set (non-comparable survey methodology or presen-

tation of results) and an additional survey was excluded be-

cause no predictor data could be obtained for that country

and year. As a result, the final number of data points (survey

estimates) available for analyses in the training set was re-

duced from 54 to 50 (Table 1). Predictions were made for

all low- and middle-income countries in Africa and Asia

with predicted prevalence of over 0.1% (according to WHO

estimates) where national surveys have not been

implemented—a total of 63 African and Asian countries.

The number of participants per survey is show in

Supplementary File 1, available as Supplementary data at

IJE online.

A conceptual framework was developed for the model

based on selected publications on drivers and determinants

of TB.20–27 Four categories of predictors were identified:

TB notification data, TB programmatic determinants,

co-morbidities and socio-environmental factors. TB notifi-

cation data include all forms and laboratory-confirmed

notified cases of TB, as well as percentage of multi-

drug-resistant, percentage retreated and treatment success

rate. TB programmatic determinants are health system

determinants representing a country’s capacity to find and

effectively cure all TB cases. Co-morbidities are those that

are known to be associated with TB (including poor nutri-

tional status as a broader indicator of impaired health resil-

ience). Socio-environmental factors encompass a broad

range of factors that either increase the risk of exposure to

TB infection or are linked to impaired host defense against

infection.

Whereas our framework represents a theoretical

construct to capture a range of potential predictors of TB

prevalence, its operationalization was limited to the varia-

bles available in openly accessible databases. Predictor

variables were matched to prevalence estimates if they

were available for the year of the survey. Data at national-

level sources of data included: the WHO global TB data

collection system,28 the WHO Global Health Observatory

data repository,29 the World Data Bank,30 the WHO-

UNICEF vaccination coverage estimates,31 the WorldClim

database (1-km spatial resolution climate surfaces for

global land areas),32 as well as source datasets provided by

UNAIDS33 and the International Diabetes Federation

Atlas.34 Sources of data for subnational areas included

data from national bureaus of statistics (e.g. censuses),

Demographic and Health Surveys (DHS) reports35 and

Multiple Indicator Surveys (MICS) reports.36 TB notifica-

tion data at the subnational level were obtained from

national TB control programmes (NTPs). A total of 111
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Table 1. Survey estimates available for the TB prevalence model (N¼54) and included in the model (N¼ 50)

Level Africa Asia

National estimates 2011 Ethiopia 1990 China

2012 Gambia 1990 Republic of Koreaa

2012 Rwanda 1991 Thailanda

2012 Thailand 1994 Myanmar

2012 Tanzaniab 1995 Republic of Korea

2013 Ghana 1997 Philippines

2013 Malawi 2002 Cambodia

2013 Sudan 2007 Philippines

2014 Zambia 2008 Bangladesha

2014 Zimbabwe 2011 Cambodia

2015 Uganda 2011 Lao

Subnational estimates from national prevalence surveysc 2012 Nigeria (6 areas) 2000 China (3 areas)

2004 Indonesia (3 areas)b

2007 Vietnam (3 areas)

2009 Myanmar (2 areas)

2010 China (3 areas)

2011 Pakistan (6 areas)

2014 Indonesia (3 areas)b

Subnational surveys (India) 2007 Thiruvallur (Tamil Nadu)a

2009 Jabalpur (Madhya Pradesh)d

2009 Bangalore Rural (Karnataka)

aExcluded from training set (too few predictor variables, no confidence interval reported or non-standard survey methodology/implementation).
bThe Tanzania and Indonesia surveys only reported sputum smear positive cases (SSþ), so we estimated the number of bacteriologically confirmed cases based

on the ratio between SSþ and bacteriologically confirmed from prevalence surveys conducted in the respective regions (WHO defined Africa and South-East Asia

region respectively).
cSee Supplementary File 3, available as Supplementary data at IJE online, for details.
dReported estimates were corrected by multiplying them by 1.7 to account for no x-ray in the survey’s screening procedure, as suggested by the authors of the

study.

Figure 1. Countries used for TB prevalence prediction (the training set) and countries for which prevalence was predicted.
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predictor variables were identified, as summarized in

Supplementary File 2, available as Supplementary data at

IJE online. Most indicators were obtained as part of time

series covering years between 1990 and 2015, but with

many data gaps. When data for a given country were miss-

ing for a year, when prevalence survey data were available,

we used the ‘first observation carried backward’ and ‘last

observation carried forward’ method for up to 5 years

prior to or after the available data points to improve

coverage.

Model definition

Adjusted numbers of survey participants (N’) and adjusted

numbers of bacteriologically confirmed (C’) individuals,

which take into account population weighting, clustering,

non-participation and missing data, were estimated based

on the final reported prevalence estimates (p) and the up-

per and lower limits of their confidence intervals (CIs) as-

suming a normal symmetrical interval on either side of the

prevalence estimate. We assumed that the adjusted number

of bacteriologically confirmed cases in a given country i

and subnational area j arose from the binomial

distribution

C
0

ij � BðN0

ij; pijÞ

and thus fitted the following multilevel multivariable

model:

log it pijð Þ ¼ aþ b1x1ij þ � � � þ bnxnij þ ui þ eij;

where i denotes the countries for which survey estimates

were available and j the subnational estimate within coun-

try i; a is the estimated baseline logit transformed number

of cases C’ in country i and subnational area j; the b

parameters b1 to bn are the estimated regression coeffi-

cients for the independent predictor variables x1 to xn; ui

denotes a country-specific error term (normally distrib-

uted); and eij denotes a subnational area-specific error term

(normally distributed).

It is worth pointing out here that about half of the coun-

tries had only national-level estimates and the other half

subnational-level estimates for the outcome variable (num-

ber of bacteriologically confirmed cases). For the countries

for which subnational-level estimates were available, pre-

dictors were at times found at the given subnational level,

but at times the national-level predictor value had to be

used at all subnational levels if it was not available at the

subnational level. As a result, the multilevel model we fit-

ted included a mixture of national and subnational levels.

The country-specific error term ui (random effect) ensures

that the subnational estimates belonging to the same coun-

try are adequately grouped together and dependencies be-

tween them modelled out. This random effect also enables

to account for the fact that some countries had repeated

surveys (e.g. Korea, China and Indonesia).

Model building

In predictive modelling, the aim is to develop a model to

predict new or future observations. Model-building strate-

gies for this type of model focus on association rather than

causation and criteria for choosing predictors are the avail-

ability of the predictors at the time of prediction as well as

the strength of the association between the response and

the predictors19 or predictions. The primary consideration

in model building was to avoid over fitting—‘the biggest

danger to generalization’,19 especially relevant in our case

given the small sample size available for modelling. The

secondary consideration was to reduce the dimensionality

of the data for modelling, to minimize multicollinearity

and address multiple testing.

Predictor variables were thus selected for inclusion in the

multivariable model based on the following procedure. First,

predictors were selected based on completeness in the train-

ing dataset—only complete variables were considered due to

the limited number of prevalence data points available for

modelling. Second, the relationship between the predictors

and the outcome count data (C’) was explored by means of

scatter plots to identify potentially non-linear relationships.

Logarithmic and squared transformations of the predictors

were included in this step based on the visual inspection of

the scatter plots. A climatic score was computed by means of

principal component analysis based on a country’s average

yearly temperature and minimum as well as maximum pre-

cipitation. Third, complete predictors were univariately fit-

ted to the outcome data and model fit was assessed based on

akaike information criterion (AIC) values. Finally, pairwise

correlations were calculated and correlated predictors

(Pearson’s correlation coefficient q>0.7) were dropped

based on the lowest relative fit to the outcome data.

Two model-building strategies were pursued for the

multivariable model and their performance was compared.

The first approach (Model 1) was a purely data-driven al-

gorithm to maximize goodness of fit, whereby the final

multivariable model was built by backward elimination of

variables with the highest p-values (Wald test), starting

from the full model with all predictors with a p-value

< 0.05 in univariate analyse (this low threshold was chosen

to limit the number of candidate variables given the small

sample size). Elimination was conducted until only five

predictors were left in the model, to ensure an approxi-

mately 1:10 variable:observation ratio, as variously
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suggested in applied statistics literature to avoid overfit-

ting.37,38 The second approach (Model 2) was epidemio-

logically informed and followed a two-step approach.

First, a multivariable model was created by introducing

the variable ‘continent’ (Africa vs Asia) as well as all

TB-related variables found to be associated in the univari-

ate models with p< 0.05 (here, too, this low threshold was

chosen to limit the number of candidate variables given the

small sample size) and backward elimination was done to

discard redundant variables (p> 0.05). This choice was

made to ensure that this final model could factor in the

fact that prevalence in Asia is on average higher than in

Africa; and to ensure that TB notification data (which

could be expected to be the most predictive variables for

TB prevalence in settings with complete and accurate

reporting) would have a place in the final model. Only af-

ter this first stage were then other more distantly related

ecological predictors added one by one from those predic-

tors associated in univariate analyses with p< 0.05.

Following the 1:10 variable:observation ratio threshold,

introduction of variables was conducted until five predic-

tors were left in the model.

The linear models (Model 1 and Model 2) were used to

predict the point estimate log it pijð Þ; and the standard error

of the linear prediction was used to compute a 95% CI for

log itðpijÞ. The point estimate as well as the lower and up-

per levels of the CIs were then back-transformed to pro-

duce the final reported estimates of TB prevalence ðpijÞ.
Given that predictions were made for countries without

surveys, the parameter N
0
ij was missing for all countries.

It was thus set at 50 000 everywhere, corresponding to the

median number of participants in the surveys included in

the training set (Supplementary File 1, available as

Supplementary data at IJE online). In other words, we pre-

dicted TB prevalence for a hypothetical survey with 50 000

participants in each country.

Internal validation

Validation consisted of evaluating the degree of overfitting,

namely ‘evaluating the performance of the model not on

the training set, i.e. the data used to build the model, but

on a holdout sample which the model “did not see”’.19

A popular approach when data are scarce is cross-

validation,39,40 of which the leave-one-out cross-validation

(LOOCV) procedure is an example. For every observation

in the estimating sample, LOOCV estimates the model

specified with all but the ith observation, fits the model us-

ing the remaining N-1 observations and uses the resulting

parameters to predict the value of the dependent variable

for the ith observation. LOOCV reports a pseudo-R2 value

that is the square of the correlation coefficient of the pre-

dicted and observed values of the dependent variable.

External validation

External validation was based on sample predictions made

for 2015 for 63 countries and consisted of three steps.

First, the coherence and credibility of model predictions

were assessed by ascertaining whether the range of predic-

tions (minimum and maximum) was consistent with the

training data.

Second, model predictions were compared with WHO

2015 estimates. WHO estimates prevalence for all forms of

TB in all ages whereas our model predicted bacteriologi-

cally confirmed adults, since they are the input data for the

model from prevalence surveys. We converted our model

predictions into an estimate of all forms of TB in all ages

using the correction factor developed by WHO and applied

to their own estimates. The adjustment factor is

f ¼ 1� cþ cr

1� e
;

where c is the proportion of the population under the age

of 15, r is the prevalence ratio (children/adults) and e is the

prevalence proportion of extra-pulmonary (extra-pulmo-

nary/total). We obtained c from the World Data Bank30

population estimates, whereas r and e were obtained from

the completed prevalence surveys: r¼ 12.5% (SD 1, 4%)

and e¼10% (SD 0.3%). Prevalence estimates and Model

2 predictions were compared visually by means of an

adapted Bland and Altman plot of agreement—comparing

the ratio of measures rather than their difference to reduce

the influence of countries with very high prevalence rates.

Third, model estimates were compared with actual esti-

mates from 2015 prevalence surveys. This could be done

for two surveys conducted in 2015—in Bangladesh and in

the Phillipines—which were not included in the training set

because the estimates were not available when data man-

agement and analysis were performed.

Data management and analyses

All data management and analyses were done using Stata 14.

All codes used for analyses are presented in Supplementary

File 4, available as Supplementary data at IJE online.

Results

The final database included 50 data points in the training

set and a total of 111 candidate predictor variables.

Prevalence survey estimates for the 50 data points are as
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summarized in Figure 2a and b. After variable selection, 14

variables were included as potential predictors for the pre-

dictive multivariable model. Predictions were made for 63

countries (3 countries were dropped due to missing predic-

tor variables).

Descriptive statistics by set of countries show that the

profile of countries in the training set is similar to those for

which predictions are made (Table 2). However, the coun-

tries in the training set appear to be much more densely

populated and with a greater number of large cities, with

higher male-to-female ratios at birth and lower HIV AIDS

prevalence. This may partially be explained by the fact that

there is a higher proportion of Asian countries in the train-

ing set and a larger proportion of African countries in the

set to predict combined with period effects (the countries

to predict are all from 2015 whereas the training set is

from 1990 to 2015). Indeed, the number of large cities has

increased since 1990, the male-to-female ratio has declined

in Asia and HIV prevalence has increased.

The performance of the two final predictive multivari-

able models is shown in Table 3. Model 1 based on a data-

driven approach to variable selection performed better

than Model 2 in terms of measures of internal validity

(lower AIC and higher LOOCV cross-validation

correlation). However, the estimates from Model 1 were

neither credible [maximum prevalence of over 8222 per

100 000 (bacteriologically confirmed cases in adults), over

five times the upper CI of the prevalence survey with the

highest prevalence in the training set] nor coherent (esti-

mates were on average higher in Africa than in Asia, the

opposite of what can be observed in the prevalence sur-

veys). On the other hand, Model 2, resulting from an epi-

demiologically informed inclusion of variables, provided

only slightly lower internal validity measures but much

more credible and coherent prevalence predictions. Thus,

Model 2 was retained and used for final predictions

(Table 4).

Scatterplots of model predictions vs observed WHO

prevalence estimates in the training set are presented in

Figure 3 and other diagnostic plots in Supplementary File

5, available as Supplementary data at IJE online. Model 2

parameters on the logit scale, along with standard errors,

variance-covariance matrix and data for predictions, are

presented in Supplementary File 6, available as

Supplementary data at IJE online.

Individual country predictions based on Model 2 along

with WHO estimates and Bland-Altman plots of agree-

ment comparing the two estimates can be found in
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Figure 2. (a) Prevalence estimates included in the training set for Asia. (b) Prevalence estimates included in the training set for Africa.
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Supplementary File 7, available as Supplementary data at

IJE online. Overall, there was good agreement between

our model estimates and WHO estimates. The ratio (WHO

estimates)/(Model 2 predictions) averaged over all coun-

tries was close to 1 (1.09, 95% CI 0.93–1.25). However,

the distribution of the ratio is skewed, with five countries

standing out as being more than twice as high according to

WHO estimates than model predictions (Guinea Bissau,

Liberia, Tanzania, Nigeria and Somalia).

The comparison of Model 2 predictions with 2015 sur-

vey estimates from Bangladesh and the Philippines provide

very positive confirmations. In Bangladesh, the 2015
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Figure 2. Continued.

Table 2. Descriptive statistics of complete predictors, by set of countries

Training set (n¼50) Countries to predict (n¼63)

Mean SD Mean SD

Infant mortality (number of deaths in children under the age of 1 per 1000 live births) 44.9 21.0 43.1 20.5

Proportion of the population under the age of 15 34.2 8.5 36.8 8.0

Population density (pop/km2) 354.6 553.0 132.7 220.7

Proportion of the population living in an urban setting 37.7 13.6 42.7 19.0

Population living in the largest city (per million) 9.3 5.9 4.9 5.1

Improved sanitation facilities (% of population with access) 50.5 19.2 47.0 26.6

Improved water source (% of population with access) 77.6 14.3 77.5 16.7

Percentage retreated TB cases out of all notified cases 7.3 4.5 10.1 7.5

New all forms TB cases notified (rate per 100 000 population) 106.7 60.8 143.1 96.3

New laboratory-confirmed TB cases notified (rate per 100 000 population) 51.5 31.8 67.4 44.0

HIV prevalence (%) 1.7 3.2 3.6 6.2

BCG coverage (%) 85.2 14.6 87.8 13.0

Climatic score (PCA) 0.01 1.54 �0.03 1.50
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prevalence survey yielded and estimated a prevalence of

260 per 100 000 (all forms all ages), fully within the 95%

CI of our model predictions: 216 (95% CI 168–277). The

survey in the Philippines on the other hand yielded an esti-

mate of 980 per 100 000 for all forms and all ages. This

was a much higher prevalence than anticipated by WHO.

Whereas it is also above the 95% CI of Model 2 estimates

(639, 95% CI 480–848), our predictions (Bland and

Altman plot in Supplementary File 7, available as

Supplementary data at IJE online) also suggested that the

WHO estimates were lower than what would be expected

based on the countries’ TB ecological profiles.

The map presented in Figure 4 enables comparison of

the geographical distribution of the WHO estimates and

Model 2 predictions. In Africa, the global patterns are sim-

ilar, with southern Africa generally displaying higher prev-

alence levels than Saharan African countries (a notable

difference is the absence of predictions for the Democratic

Republic of Congo and South Sudan, for which predictions

could not be made due to lack of covariate data—see

Supplementary file 7, available as Supplementary data at

Table 3. Comparison of multivariable Model 1 vs Model 2

Internal validity External validity

Predictor variables AIC for full model LOOCV R-sq Descriptive statistics of

out-of-sample predictionsa

Model 1 1. Population density

2. BCG coverage

3. New all forms TB notification rate

4. Proportion population under the age of 15

5. Population in largest city

521.9 94% Asia (n¼21):

Median (IQR): 448 (307)

Min-max: 122–4948

Africa (n¼35)

Median (IQR): 539 (447)

Min-max: 216–8222

Model 2 1. Continent (Africa/Asia)

2. Percentage retreated cases out of all notified

3. New all forms TB notification rate

4. Population density

5. Proportion population under the age of 15

576.4 92% Asia (n¼22):

Median (IQR): 542 (256)

Min-max: 261–1391

Africa (n¼40)

Median (IQR): 321 (171)

Min-max: 161–1009

aPredicted prevalence of bacteriologically confirmed TB per 100 000 adults in 63 countries not included in model building.

Table 4. Final multivariable Model 2 (n¼50)a

Predictor OR (95% CI) p-value

Continent (Africa vs Asia) 0.52 (0.37–0.72) <0.001

Percentage retreated out of all notified cases 1.03 (1.02–1.04) <0.001

New all forms TB notification rate (per 10-unit increase) 1.04 (1.02–1.05) <0.001

Population density (per 100 people/km2 increase) 0.96 (0.95–0.97) <0.001

Proportion population under the age of 15 1.03 (1.01–1.04) <0.001

aThese are exponentiated model coefficients; coefficients on the logit scale, along with standard errors, variance-covariance matrix and data for predictions, are

presented in Supplementary File 6, available as Supplementary data at IJE online.
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Figure 3. Predicted (Model 2) vs observed (WHO prevalence survey esti-

mates) TB prevalence estimates in training set (n¼ 50) (all years in train-

ing set from 1991 to 2014).
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IJE online, for details). With regard to Asia, Model 2 pre-

dictions for Central Asia are much higher than the WHO

estimates, and estimates in India, Pakistan and

Afghanistan are also higher, though the difference is not as

stark. Interestingly, Model 2 predictions have corrected for

the Indonesia 2014 survey estimates by lowering the preva-

lence as opposed to the WHO estimates, which kept the

very high estimates of the survey into 2015.

Discussion

Predictive ecological modelling can provide useful comple-

mentary estimates for TB prevalence and can be considered

alongside other methods in countries with limited TB data.

Indeed, despite limited TB data in the countries selected for

prediction, a reasonable number of ecological predictors of

TB burden could be obtained from openly available data-

bases such as the World DataBank and the Global Health

Observatory data repository. Furthermore, many of those

predictors could also be found at subnational levels from

nationally representative surveys such as the DHS and

MICS, as well as the national NTPs. By including all avail-

able subnational estimates, we were able to achieve a near

2-fold increase the number of data points in the training

set. Even with a very limited number of data points in the

training set, the predictive models were able to show high

internal validity (cross-validations in the training set) as

well as reasonably good external validity (coherence and

credibility of sample predictions). The ultimate validation

of our model was the comparison of 2015 predictions with

actual estimates from the 2015 prevalence surveys in

Bangladesh and the Philippines, which provided a very

positive confirmation of the validity of our approach.

For the countries where there is good agreement between

WHO estimates and our own model predictions, this model-

ling exercise suggests that the WHO estimates are consistent

with the broader ecological landscape of those countries.

For the countries where there is a wide discrepancy, the

model predictions can be used as one of the sources of infor-

mation to prioritize the implementation of a TB prevalence

Figure 4. Maps of Model 2 predictions and WHO estimates.
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survey or a review of the assumptions used for the estima-

tion of TB burden. For example, in countries of the former

Soviet Union (Kazakhstan, Kyrgyzstan, Georgia Tajikistan

and Uzbekistan), a consistent spatial pattern was observed,

with model predictions between twice and three times

higher than WHO estimates (Figure 4; Supplementary File

7, available as Supplementary data at IJE online). All these

countries have higher-than-average retreatment rates

(Table 2; Supplementary File 6, available as Supplementary

data at IJE online) and higher rates of drug-resistant TB.

Whereas retreatment rates are explicitly factored in the

model predictions, the WHO estimates of prevalence used

in this study do not account for the frequency of retreatment

and drug resistance.

To the best of our knowledge, the models presented

here are the first attempt to capitalize on estimates

provided by national prevalence surveys to inform

estimates—in countries where surveys have not been con-

ducted—using predictive ecological modelling. In our ap-

proach, we chose to build upon an epidemiological

framework of TB burden, although conceptually at odds

with a pure predictive modelling approach. Taken to an

extreme, predictive modelling can be seen as a process of

data mining where the only consideration is predictive ac-

curacy. In this study, we pursued two strategies for model

building: one based purely on data considerations and

maximizing fit according to the AIC and one based on epi-

demiological judgement of which variables should figure in

a model that aims to predict TB based on putative causal

relationships. The latter appears to perform better by pro-

viding more coherent and credible out-of-sample predic-

tions. This suggests that the traditionally strict predictive

modelling approach may not always be the best option to

predict complex disease outcomes.

The major strength of our model is that we made maxi-

mum use of all the information on TB burden available

from TB prevalence survey reports, including all available

subnational estimates. The binomial model we fitted im-

plicitly weighs smaller surveys less than larger ones as coef-

ficients and CIs are estimated by maximum likelihood

estimation, where the likelihood is a function of the num-

ber of survey participants. In addition, since the number of

participants used for modelling was in effect an adjusted

number of participants based on the precision of estimates

(N’), less precise estimates were also implicitly given less

weight. As a result, the CIs of our predictions take into ac-

count the imprecision associated with all estimates in the

training set.

The model presented here can be improved in a number

of ways. The main limitation of the model is the paucity of

data points available for modelling, which prevented us

from fitting more complex models, since these would have

resulted in overfitting and thus limited predictive power.

We were not able to include non-linear relationships in the

final multivariable model (although these were investigated

graphically and logarithmic transformations tested univari-

ably), nor any time trends. Therefore, first and foremost,

future models will be able to benefit from the inclusion of

further data points—either as the number of implemented

TB prevalence surveys increases or if datasets from existing

surveys are made available to derive subnational estimates

where feasible and appropriate. Second, the model fitted

here did not take gender into account, although TB preva-

lence surveys always present estimates disaggregated by

sex, and a number of predictor variables (total population

counts, HIV prevalence, diabetes prevalence, mortality, life

expectancy, literacy, etc.) are also available disaggregated

by sex. The inclusion of this level of stratification in the

model would enable both an increase in the number of

data points as well as accounting for gender effects and dif-

ferences. Last but not least, future modelling exercises

could take into account the spatial dependencies in the

data more explicitly by fitting geo-statistical models.

Conclusions

National TB cross-sectional surveys provide relatively un-

biased estimates of TB prevalence among surveyed popula-

tions, but also represent a major undertaking of financial

and human resources. Models presented here show that TB

prevalence surveys contain very useful information beyond

the borders of the country in which it has been imple-

mented. Combined with (sub)national predictors of TB,

they can be used to inform TB prevalence estimates in

other countries by leveraging TB notification data and

socio-demographic indicators within the framework of an

ecological predictive model. As the number of completed

TB prevalence surveys increases, refinements to the meth-

odology presented here could be made to increase the va-

lidity and usefulness of predictions for countries with

limited TB data. This process could be facilitated and en-

couraged by countries and WHO making datasets publicly

available for interested researchers.

Supplementary Data

Supplementary data are available at IJE online.
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