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Abstract

Introduction

Schistosomiasis is a parasitic disease in Tanzania affecting over 50% of the population.

Current control strategies involve mass drug administration (MDA) campaigns at the district

level, which have led to problems of over- and under-treatment in different areas. WHO

guidelines have called for more targeted MDA to circumvent these problems, however a

scarcity of prevalence data inhibits decision makers from prioritizing sub-district areas for

MDA. This study demonstrated how geostatistics can be used to inform planning for tar-

geted MDA.

Methods

Geostatistical sub-district (ward-level) prevalence estimates were generated through com-

bining a zero-inflated poisson model and kriging approach (regression kriging). To make

predictions, the model used prevalence survey data collected in 2021 of 17,400 school chil-

dren in six regions of Tanzania, along with several open source ecological and socio-demo-

graphic variables with known associations with schistosomiasis.

Results

The model results show that regression kriging can be used to effectively predict the ward

level parasite prevalence of the two species of Schistosoma endemic to the study area. Kri-

ging was found to further improve the regression model fit, with an adjusted R-squared
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value of 0.51 and 0.32 for intestinal and urogenital schistosomiasis, respectively. Targeted

treatment based on model predictions would represent a shift in treatment away from 193

wards estimated to be over-treated to 149 wards that would have been omitted from the dis-

trict level MDA.

Conclusions

Geostatistical models can help to support NTD program efficiency and reduce disease

transmission by facilitating WHO recommended targeted MDA treatment through provision

of prevalence estimates where data is scarce.

Author summary

In Tanzania, schistosomiasis is a vast public health problem treated through mass drug

administration (MDA) campaigns that target large groups of the population. Such mass

drug administration (MDA) campaigns require significant amounts of resources challeng-

ing the capacity of chronically underfunded schistosomiasis control programs to sustain

annually. The way in which MDA campaigns have been conducted, by targeting whole

districts believed to be endemic, have not had optimal results for reducing disease trans-

mission, have facilitated problems of under-treating in many population groups while

over-treating other non-endemic areas, and have placed a significant strain on the limited

resources available.

To circumvent such problems, the World Health Organization (WHO) has recom-

mended that treatment efforts need to be more targeted to endemic communities and

administrative areas within districts, and that MDA campaigns should be conducted at a

sub-district level. The WHO also provides explicit guidelines for treatments of communi-

ties based on parasitological prevalence of schistosomiasis. While there is sound rationale

in making this switch, most schistosomiasis endemic countries including Tanzania do not

have adequate surveillance data to make such informed decisions at this level. Limited

data on schistosomiasis prevalence inhibits disease control programs from making data

informed decision on where to treat, as well as adhering to WHO recommendations for

conducting targeted treatment at the sub-district level.

Geostatistical models are spatial analysis tools that have been used in the past to help

predict the likelihood of disease prevalence in nearby areas where there is limited data.

They are particularly helpful in predicting diseases like schistosomiasis that have strong

associations with environmental and socio-demographic elements that we do have data

on across much of the world. Publications on the use geostatistical models to predict

schistosomiasis prevalence in different settings date back more than 20 years, but have

not yet been integrated to aid the decision process of national programs, nor have they

been specifically advocated for by the WHO. The study seeks to examine the implica-

tions of using model predictions to guide targeted, sub-district level treatment, in terms

of populations requiring treatments when compared with conventional district level

approaches.

This publication demonstrates that use of geostatistical models for predicting schisto-

somiasis is possible and can be a valuable tool to inform where to treat. It furthermore

estimates that the populations eligible for targeted treatment are considerably different

than the populations who would be receiving treatment under conventional district level

PLOS NEGLECTED TROPICAL DISEASES Enabling targeted mass drug administration through geostatistical models in Tanzania

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011896 January 16, 2024 2 / 21

Data Availability Statement: Precision mapping

data used in this study have been aggregated to

various administrative levels and are publicly

available for download on the ESPEN database.

https://espen.afro.who.int/diseases/

schistosomiasis Shapefiles, base layers for maps,

and data for sociodemographic covariates are all

open source and publicly available, and referenced

within the document. The database of

sociodemographic variables used for the ZIP

model, in addition to variables calculated in QGIS

like lake distance, has been additionally uploaded to

Zenodo and shared via the following link: https://

zenodo.org/records/10003824 Site based data

from precision mapping can made be available with

permission from NIMRI and the Republic of

Tanzania. Permanent Secretary Ministry of Health

Government City: Mtumba Afya road/Street P.O.

Box 743 40478 DODOMA Alternatively, you may

contact the Tanzania MoH, at ps@afya.go.tz.

Funding: The work for this publication was made

possible through the funding of the ASCEND

project from the foreign commonwealth and

development office (FCDO). The reference number

for the project is PO8374. https://www.gov.uk/

government/organisations/foreign-commonwealth-

development-office The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: There are no known

competing interests from any of the authors that

would have served to bias the research or

manuscript being submitted.

https://doi.org/10.1371/journal.pntd.0011896
https://espen.afro.who.int/diseases/schistosomiasis
https://espen.afro.who.int/diseases/schistosomiasis
https://zenodo.org/records/10003824
https://zenodo.org/records/10003824
mailto:ps@afya.go.tz
https://www.gov.uk/government/organisations/foreign-commonwealth-development-office
https://www.gov.uk/government/organisations/foreign-commonwealth-development-office
https://www.gov.uk/government/organisations/foreign-commonwealth-development-office


treatment approached, placing emphasis on the importance of switching to targeted treat-

ment. The paper argues that uptake of geostatistical models can enable targeted planning

below the district level, a major step to facilitate a systematic change that the WHO

believes will drive down transmission of the disease, the importance of which cannot be

understated in an area that is so historically burdened by the disease and its associated

health complications.

Introduction

The United Republic of Tanzania is the country with the world’s second highest prevalence of

schistosomiasis, a neglected tropical disease (NTD) of major public health concern caused by

parasitic blood flukes [1–3]. In 2012, over 51% of the country’s 43.5 million people were esti-

mated to be infected with one of the two endemic schistosome species in Tanzania, Schisto-
soma haematobium and Schistosoma mansoni [4]. In spite of disease control efforts in the

years since, schistosomiasis is still believed to be highly prevalent, particularly in the regions

that make up the Lake Zone in the northwest part of the country [5]. While limited surveil-

lance capacity and the nonspecific and often sub-clinical manifestations of the disease contrib-

ute to the difficulty of estimating schistosomiasis prevalence and morbidity rates [6], it is

estimated to result in 1.5–2.5 million disability adjusted life years per year globally[7].

Transmission of schistosomiasis is strongly driven by socio-ecological factors, as it mainly

occurs when humans interact with freshwater bodies that contain snail intermediate hosts and

are contaminated by excreta of infected people [8,9]. The main control strategy recommended

by the World Health Organization (WHO) is population wide preventive chemotherapy (PC)

with praziquantel, which is delivered through Mass Drug Administration (MDA) campaigns.

For MDA to be sustainable and effective, it should be supplemented by health education and

safe water and sanitation interventions (WASH), and environmental management and snail

control should be given to prevent re-emergence of the parasite in low prevalence settings

[10]. In Tanzania, PC is often delivered in school based de-worming programs largely targeted

at school-age children (SAC), since this group is relatively easy to reach and is expected to

carry the highest burden of disease compared to other populations at high risk [11,12].

In Tanzania, these control strategies have yielded limited success in reaching disease control

targets [13]. Of the 16 million individuals requiring preventive chemotherapy for schistosomi-

asis in 2020, only 3.2 million individuals actually received it [14]. Elimination has not been

achieved in any of the endemic districts, and substantial variation in the community-level

compliance with MDA treatments have been documented [15,16]. Limited disease prevalence

data, sub-optimal surveillance systems and sparse resources for MDA campaigns make it chal-

lenging for disease control programs to target their efforts to the populations most in need

[11]. While millions of people in need of PC in Tanzania will not receive it each year, district

wide treatment campaigns have facilitated a practice of overmedicating some communities

with low or no disease burden, which strains limited resources and increases the likelihood of

adverse drug events[17–20]. The uncontrolled transmission of schistosomiasis and need for

recurrent MDA campaigns at a district wide level has created a substantial economic and

human resource burden on schistosomiasis control programs and increased dependence on

foreign funding to sustain them [13,21].

Understanding of the geographic distribution of the disease is vital to enable more focused

interventions and efficient use of resources [1,13,15,21]. In Tanzania and other high burden set-

tings, schistosomiasis prevalence has been estimated by sampling a small selection of schools to
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determine the endemicity and MDA eligibility of an entire district [22]. As schistosomiasis has

been demonstrated to be heterogeneously distributed throughout populations in endemic districts,

questions remain for the effectiveness and efficiency conducting MDA in an entire district that

may contain hundreds of thousands of people [23]. District wide treatment has further been impli-

cated in facilitating the aforementioned problems of over and under-treatment of certain popula-

tions [21]. Therefore, in 2021 in line with WHO recommendations, the government of Tanzania

committed to shift from implementing MDA treatment per district-unit to the much smaller

ward-unit, which would be enabled by mapping schistosomiasis at a finer geographical resolution,

referred to as precision mapping [21,24,25]. Despite efforts and progress in precision mapping in

the Lake Zone of Tanzania, the majority of wards still lack reliable prevalence data [5].

Since routine precision mapping of disease prevalence in each ward would be highly costly

and not likely feasible at a large scale, the WHO has recommended the development of new

cost effective tools to facilitate the process [25]. The use of geostatistical and spatial modeling

has generated interest for its capacity to evaluate and map areas that may be endemic for schis-

tosomiasis where there is limited surveillance or prevalence data [26–28], and has even been

demonstrated to be a viable and cost-effective method of mapping schistosomiasis prevalence

in certain settings (29). Regression techniques have additionally been used to estimate relation-

ships between survey-based schistosomiasis prevalence and socio-ecological factors, and to

predict prevalence at the un-sampled locations [30,31]. Some of these ecological factors, which

have been shown to associate with the presence of schistosomiasis, are freely accessible and

fairly well documented, and include distance to water bodies or wetlands, temperature, rain-

falls, and altitude [32]. Elements that are less frequently incorporated in predictive models but

have been well-established to be associated with schistosomiasis prevalence include WASH

conditions and childhood malnutrition [33–36].

Although its coverage is still limited to a small proportion of wards, precision mapping data

is becoming increasingly available in endemic settings [5,37]. Though the combination of pre-

cision mapping and geostatistical modeling techniques have been utilized to enable the low-

cost and reproducible estimation of the geographical distribution of schistosomiasis preva-

lence, there is still limited evidence for the uptake of these techniques at scale to guide inter-

vention strategies for disease control [25]. While previous spatial modelling studies have made

estimations of prevalence at national and continental scales, there are few modeling studies

that have offered reliable predictions of schistosomiasis prevalence at small enough geographi-

cal scale to facilitate the more targeted use of PC treatment at ward level [38].

The objective of this study is to evaluate how geostatistical modeling techniques can best be

used to predict schistosomiasis prevalence at the ward level in Lake Zone, Tanzania. This is

done by presenting an analytical study that uses precision mapping survey data and ecological

covariates from open source data repositories to build a geostatistical model that creates preva-

lence estimates for each both S. mansoni and S. haematobium in wards of Lake Zone, Tanza-

nia. The study seeks to examine the implications of using model predictions to guide targeted,

ward level treatment, in terms of populations requiring treatments when compared with con-

ventional district level approaches. Finally, the study attempts to demonstrate how data-driven

targeted MDA at the ward level can be enabled using geostatistical models to bridge data avail-

ability gaps between wards with existing precision mapping data and those without.

Methods

Ethical considerations

For data collection procedures, IRB (Institutional Review Board) approval was given by the

National Ethical Committee, National Institute for Medical Research Tanzania (NIMR/HQ/
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R.8a/Vol. IX/3481), as well as by the concerning regional and district administrative authori-

ties, and is available upon request. The study was conducted in accordance with the Declara-

tion of Helsinki and International Conference on Harmonization Guideline on Good Clinical

Practice (ICH-GCP). Formal written consent forms were signed by all parents or guardians

whose children participated in the study. Children were furthermore only included in the pre-

cision mapping study if they had additionally agreed to the assent forms detailing the study

methods and their right to withdraw from the study at any time, as explained in a previous

publication on precision mapping in the Lake Zone[5]. Study population and sampling

procedures.

In May 2021 schistosomiasis parasitemia assessments (precision mapping) were conducted

through school surveys in six schistosomiasis endemic regions (Mwanza, Shinyanga, Mara,

Simiyu, Kagera, and Kigoma) in the Lake Zone of Tanzania, surrounding Lake Victoria [5].

An overall number of 290 primary schools were surveyed, evenly distributed among the 29 dis-

tricts and covering 223 (27%) of the 829 wards in the study area. In accordance with WHO

guidelines, the survey sites were purposefully selected from three different ecological zones,

based on proximity to water bodies [39]. To assess whether the 290 schools gave a good repre-

sentation of the overall study area, main descriptive statistics were reported, and compared

between sampled and non-sampled locations.

At each school, 30 boys and 30 girls aged 9–13 years were surveyed, adding up to 17,400

children. Urine filtration was used as the diagnostic test for urogenital schistosomiasis, with

each sample examined by two technicians. The Kato Katz technique was used for intestinal

schistosomiasis, with processed samples prepared on four slides (two sets of duplicate slides)

using thick smear for two technicians to evaluate. Thick smears for each of the four slides were

prepared using distinct areas of the stool sample to account for a potentially heterogeneous dis-

tribution of eggs within fecal samples. For quality assurance of both urine filtration and Kato

Katz tests, 20% of all positive and negative samples were re-examined by a third technician

blinded to the findings of the previous two technicians that had examined them. The informa-

tion on the process of collection of samples is described in greater detail in a previous publica-

tion on the precision mapping survey [5]. Handheld global positioning system (GPS) devices

were used to determine the geographic coordinates of each sample site.

Data management and covariate selection. Covariates were selected to be included in

the models based on previously reported associations with schistosomiasis in past studies. A

full list of covariates and their resolution and time frame is shown in Table 1 [26,32,40,41].

The density of snail species that can act as an intermediate host have been found to be affected

by altitude, thriving in lower altitudes closer to sea level [32]. These snail species survival and

fecundity have furthermore been shown to be influenced by ranges of land surface tempera-

tures [32,42]. Terrain ruggedness was used as a proxy to estimate the likelihood of accumula-

tion of standing water correlated with snail occurrence [40,43]. In past precision mapping of

schistosomiasis, vegetation indices have also been used to predict areas endemic for schistoso-

miasis [26,44]. The distance to a lake, or large freshwater body, has been found to be a strong

determinant for human water-contact behavior, thereby influencing the probability of schisto-

somiasis prevalence and intensity [26,44]. Furthermore, data on practice of open defecation

(% of population), use of Improved Water Sources (IWS, % of population) and stunting rates

(% of children under five) was retrieved from the 2015 Demographic and Health Survey

(DHS) data repository and used as proxies for WASH and socio-economic conditions, which

have been reported to be associated with schistosomiasis transmission at the community level

[26,34,35]. All covariates were derived from open source data repositories and extracted as ras-

ter data covering the study area. Data analyzed in QGIS software were presented on open

PLOS NEGLECTED TROPICAL DISEASES Enabling targeted mass drug administration through geostatistical models in Tanzania

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011896 January 16, 2024 5 / 21

https://doi.org/10.1371/journal.pntd.0011896


source base layers from the United States Geological Survey (USGS) to provide context of

proximity to lakes [45].

Statistical analysis

To allow for ward level comparisons, all ecological data at lower resolutions, shown in Table 1,

were aggregated up to the level of the ward by taking the mean of all observations within a sin-

gle ward. To assess whether our survey data provides a representative sample of the ecological

conditions across the wards of the whole study area, two-sample t-tests were performed to con-

firm that the mean values of covariates from surveyed and non-surveyed wards did not differ

significantly from each other. Zero-Inflated Poisson (ZIP) regression was used to account for

an excess of zero prevalence counts which were observed in the survey data. ZIP models were

used to explore associations between the different socio-ecological covariates and schistosomi-

asis prevalence. These models are specified by simultaneously estimating the probability of

finding zero cases (logistic distribution) as well as the expected count of cases [46]. To assess

whether different endemic schistosoma species (S. haematobium and S. mansoni) occurred in

different environmental conditions, separate models were fitted for urogenital and intestinal

schistosomiasis prevalence data. A backward stepwise selection method was applied to the ini-

tial models including all covariates as both predictors of the counts (Poisson) and as predictors

of the excess zeros (logit). Model fit was assessed using the Akaike Information Criterion (AIC)

[47]. The best fitting model was identified as the model with the lowest AIC score, indicating

best model fit after stepwise removal covariates with the lowest partial fit. Covariates were only

excluded if there were high degrees of collinearity or if they reduced the goodness of fit based

on the AIC, not according to levels of significance in univariate analysis. The Vuong test, com-

paring the ZIP models with standard Poisson models, indicated significantly better fit of the

ZIP model if p<0.05 [48]. These procedures were performed using Stata (Stata 15SE) [49].

After model fitting, the model residuals were used to test for spatial dependence using the

Moran’s I statistic. This showed that the ZIP models were not effective in fully explaining the

observed spatial clustering of schistosomiasis across schools. To improve the predictive accu-

racy of the model, Ordinary Kriging was applied to interpolate the regression residuals and

add these to the ZIP model predictions [50,51]. This technique combines regression modelling

Table 1. Description of covariate data included in the model.

Variable Resolution Type Time frame Data Source

Spatial delineation of wards NA Vector (shapefile) April 2018 www.gadm.org, version 3.4

Elevation (DEM, m) 30 x 30 m Raster grid 2011 ASTER GDEM V3

Improved water source (% of pop.) 5 x 5 km Raster grid 2015 DHS Spatial Data Repository

Lake distance (m) 1 x 1 m Raster grid - Calculated in QGIS using OSM

Open defecation (% of pop.) 5 x 5 km Raster grid 2015 DHS Spatial Data Repository

Pop. density (pop./km2)* 100 x 100 m Raster grid 2020 WorldPop Census data

Ruggedness (TRI, m) 30 x 30 m Raster grid - Calculated from DEM

Stunting (% of pop. <5y/o) 5 x 5 km Raster grid 2015 DHS Spatial Data Repository

Temperature (LST, ˚C) 1 x 1 km Raster grid Avg. day temp. 2022 Worldclim (v.2.1)

Vegetation (NDVI) 250 x 250 m Raster grid Daytime avg. 16 days 2020 MODIS v6.1

Water index (NDWI) 100 x 100 m Raster grid Avg. 2020 MODIS v6.1 MOD13Q1

Wetness (TWI) 30 x 30 m Raster grid NA Derived from GDEM

DEM: Digital Elevation Model; TRI: Terrain Ruggedness Index; LST: Land Surface Temperature; NDVI: Normalized Difference Vegetation Index; NDWI: Normalized

Difference Water Index; TWI: Topographic Wetness Index; OSM: Online Street Map. *Matched with UNPD 2020 estimates.

https://doi.org/10.1371/journal.pntd.0011896.t001
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with geostatistical interpolation to optimize model fit in order to predict in locations where no

data was collected while accounting for spatial dependencies in the observed data, referred

throughout this paper as regression kriging (RK) [50]. Spherical semi-variograms were calcu-

lated based on ward centroids and used to assess the presence of spatial dependencies in model

residuals over incremental distance. This was used to predict where ZIP models over or under

predicted schistosomiasis prevalence. Tenfold cross-validation of the ZIP and RK models was

performed, and the resulting adjusted R2 indicated the proportion of variation caused by the

independent variables. Regression kriging and cross-validation were performed using R Soft-

ware [52–56].

Calculating treatment targets

Wards were identified as in need of treatment when the predicted schistosomiasis parasitologi-

cal prevalence of SAC was at least 10%, in line with WHO treatment recommendations [10].

The total population in need of PC treatment for intestinal and/or urogenital schistosomiasis

was calculated by adding up the total school-aged population for all wards in need of treatment

under either a district-level or a ward-level approach. The population of wards was calculated

through zonal statistics in QGIS based on secondary demographic data, namely the pixel-level

population density [57]. The number SAC per ward was calculated multiplying the ward level

population and proportion of SAC per district based on secondary demographic data from the

national bureau of statistics of Tanzania [58]. The number of required annual treatments was

built around the assumptions that (1) there would be one round MDA per ward or district

annually, which may be subject to change based on intensity of infection, and (2) only SAC

would receive treatment, which may additionally change in the coming years as disease targets

encompass more members of the community [10].

Results

Descriptive statistics

The characteristics of the population studied are displayed in Table 2. Precision mapping dem-

onstrated that in the regions of Kigoma, Mara and Mwanza, each directly situated along either

Lake Victoria or Lake Tanganyika, intestinal schistosomiasis was dominant, as shown in Fig 1

and S1 Table. Conversely, in Shinyanga and Simiyu regions, which both do not border a lake,

urogenital schistosomiasis was much more commonly found than intestinal schistosomiasis.

Table 2. Characteristics of children in the sample (n = 17,398). Intensity of infection for urogenital schistosomiasis

was determined through counting eggs per 10 ml of urine through urine filtration test. Intensity of infection for intesti-

nal schistosomiasis was determined through counting the number of eggs in 1 gram of fecal samples through the Kato

Katz technique.

Characteristic No. %

Total Sampled Mean Ag 17,398

11.05

100

-

Male sex 8,666 49.8

Urogenital SCH, % of sample (95% CI) 969 5.6

Light infection (<50 eggs/10ml), % of cases 731 75.4

Heavy infection (>50 eggs/10ml), % of cases 238 24.6

Intestinal SCH, % of sample (95% CI) 1,694 9.8

Light infection (<100 eggs/g) 600 35.4

Moderate infection (100–400 eggs/g) 693 40.9

Heavy infection (>400 eggs/g) 401 23.7

https://doi.org/10.1371/journal.pntd.0011896.t002
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Kagera region carried a substantial burden of both urogenital (further inland) and intestinal

schistosomiasis (along Lake Victoria). Aggregated to ward-level, intestinal and urogenital

schistosomiasis were found in 109 and 117 of the 223 wards surveyed, respectively. In 42

wards both variants were present, while no schistosomiasis was found in just 41 of the sur-

veyed wards. S2 and S3 Tables provide further insight into the socio-ecological statistics of

sampled and non-sampled wards. Fig 1 gives a geographical overview of the 290 schools sur-

veyed during precision mapping, and Fig 2 shows the proportion of children found in the sur-

vey to have schistosomiasis by strain and region.

Non-spatial ZIP prediction model

Due to the high degree of collinearity, wetness (variance inflation factor (VIF) = 53.4; R2 =

0.98) and temperature (VIF = 11.78; R2 = 0.91) were excluded from the ZIP model. Table 3

shows the results of the ZIP model for covariates included in the best fitting models based on

the lowest AIC. Increased prevalence of intestinal schistosomiasis was associated with areas of

higher population density and stunting rates. Areas with decreased surveyed prevalence of

Fig 1. The six highlighted Lake Zone regions examined in this study are presented on the left, and the distribution

of the 290 sampled schools among those regions on the right. Map was created in QGIS 3.30.1 using open source

spatial data from GADM.org.

https://doi.org/10.1371/journal.pntd.0011896.g001

Fig 2. Prevalence of schistosomiasis in Lake Zone regions.

https://doi.org/10.1371/journal.pntd.0011896.g002
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intestinal schistosomiasis were found to be associated with further distances from a lake, ter-

rain ruggedness, vegetation, wetness, and use of an improved water source. Surveyed preva-

lence of urogenital schistosomiasis was associated with increased elevation, lake distance,

vegetation, and water source improvement, while negatively affected by increased open defeca-

tion, population density, terrain ruggedness, and stunting. The tenfold cross-validated

adjusted R2 indicated that 40.0% and 23.3% of variance for intestinal and urogenital schistoso-

miasis, respectively, was explained by the models. In S1 and S2 Figs, ZIP-predicted prevalence

of intestinal and urogenital schistosomiasis, were shown on the map.

Geostatistical prediction model

The Moran’s I statistics (intestinal = 0.193 and p = 0.001; urogenital = 0.107 and p = 0.003; S3–

S8 Figs) showed that the ZIP models did not effectively explain the spatial patterns observed in

ward prevalence data. Residuals of the ZIP model, calculated by the difference between model

predictions and observed prevalence, were subsequently interpolated using ordinary kriging

based on the semivariogram (S9 and S10 Figs). Figs 3 and 4 show the ultimate prevalence pre-

dictions after adding the kriging results to the ZIP model predictions. As reflected by the

Table 3. Zero-inflated Poisson model (ZIP) for intestinal and urogenital schistosomiasis at ward level.

Intestinal schistosomiasis Urogenital schistosomiasis

Est. P>z 95% CI Est. P>z 95% CI

Count model

(Intercept) 0.43 0.04 0.01, 0.85 -3.18 0.00 -4.16, -2.21

Elevation (DEM, m) 1.71 0.00 0.90, 2.53

Lake distance (m) -0.003 0.00 -0.003, -0.002 0.001 0.00 0.000, 0.001

Open defecation (% of pop.) -3.66 0.00 -5.28, -2.04

Population density (pop./km2) 0.01 0.00 0.00, 0.01 -0.01 0.01 -0.02, 0.00

Ruggedness (TRI, m) -0.01 0.00 -0.01, -0.01 -0.08 0.00 -0.10, -0.05

Stunting (% of pop. <5 y/o) 3.24 0.00 2.26, 4.21 -3.14 0.00 -4.93, -1.34

Vegetation (NDVI) -1.08 0.00 -1.75, -0.41 4.03 0.00 2.37, 5.69

Water index (NDWI) 2.45 0.00 1.57, 3.32 2.20 0.16 -0.84, 5.25

Water source (% of pop.) -1.47 0.00 -1.71, -1.23 -0.47 0.07 -0.98, 0.03

Wetness (TWI) -3.14 0.00 -3.68, -2.60

Logit model

(Intercept) -6.45 0.01 -11.59, -1.31 -2.36 0.17 -5.70, 0.98

Elevation (DEM, m) 0.004 0.09 0.00, 0.01

Lake distance (m) 0.003 0.00 0.001, 0.004 -0.002 0.01 -0.003, 0.00

Open defecation (% of pop.) -8.17 0.03 -15.33, -1.00

Population density (pop./km2) -0.12 0.00 -0.19, -0.06

Ruggedness (TRI, m) 0.10 0.00 0.03, 0.17

Stunting (% of pop. <5 y/o) -9.02 0.01 -16.12, -1.92

Vegetation (NDVI) 11.64 0.00 3.90, 19.37 -8.01 0.01 -14.00, -2.02

Water index (NDWI) 11.68 0.06 -0.45, 23.81 -9.52 0.04 -18.47, -0.56

Water source (% of pop.) -3.10 0.00 -5.18, -1.01

Wetness (TWI) -1.66 0.20 -4.19, 0.88

The ZIP model is composed of a (1) Count model (Poisson): Log of the ratio of expected counts (incidence rate ratios) and a (2) Logit model: Log odds of zero prevalence.

When testing for model fit, the Vuong test: p = 0.00 showed that the ZIP model outperformed a standard Poisson model. Tenfold cross-validated models: intestinal
schistosomiasis Adj. R2 = 0.40; urogenital schistosomiasis Adj. R2 = 0.23.

https://doi.org/10.1371/journal.pntd.0011896.t003
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scatterplots in Fig 5, the adjusted R2 of 0.51 for intestinal schistosomiasis and of 0.32 for uro-

genital schistosomiasis, kriging improved the model fit.

Implications for MDA planning

Fig 6 provides an overview of the model-based treatment requirements at the ward level, as

well as the districts that are treated when surveillance data is aggregated to the district level to

inform MDA planning. Table 4 summarizes the treatment implications, showing that the spa-

tial model-based approach identifies almost 2.1 million school-age children in need of treat-

ment for urogenital or intestinal schistosomiasis, a number similar to the nearly 2.2 estimated

school aged children using conventional district level approaches. However, the spatial model-

based approach reduces the number of wards to be treated by 11% (47 wards), which are dis-

tributed throughout the map as shown in Fig 6. Fig 7 displays the wards predicted to be over-

and under-treated by the conventional district-level approach. The model predicts that

951,000 SAC in 193 wards would be over-treated, and 929,000 SAC in 149 wards would be

under-treated.

Discussion

The study used geo-statistical modeling, specifically regression kriging, to estimate schistoso-

miasis prevalence in wards in Lake Zone, Tanzania. Results from the model demonstrate that

Fig 3. Intestinal schistosomiasis prevalence predictions of the geospatial (regression kriging) model in wards in

Lake Zone, Tanzania. The model predicted high prevalence in many wards contiguous and proximal to lakes. Map

was created in QGIS 3.30.1 using open source shapefiles and spatial data from GADM.org. Data were presented on

open source base layers from the United States Geological Survey (USGS).

https://doi.org/10.1371/journal.pntd.0011896.g003
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use of a data driven approach to guide ward level MDA is feasible, and estimated to substan-

tially reduce over-treatment (951 thousand SAC, 193 wards) and under-treatment (929 thou-

sand SAC, 149 wards). Use of a ward level approach estimated an 11% reduction in wards that

Fig 4. Urogenital schistosomiasis prevalence predictions from the geospatial (regression kriging) model in wards

in Lake Zone, Tanzania. Urogenital schistosomiasis was predicted to be highly prevalent across the study region with

wards having a high predicted prevalence estimated to be further inland than intestinal schistosomiasis. Map was

created in QGIS 3.30.1 using open source shapefiles and spatial data from GADM.org. Data were presented on open

source base layers from the United States Geological Survey (USGS).

https://doi.org/10.1371/journal.pntd.0011896.g004

Fig 5. Scatterplot to assess the tenfold cross-validated linear relationship between ZIP and RK predicted values

and the observed precision mapping values, for intestinal (left) and urogenital (right) schistosomiasis.

https://doi.org/10.1371/journal.pntd.0011896.g005
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needed to be treated compared to a conventional district level treatment approach, with the

overall treatment numbers required 2.13 and 2.17 million SAC, respectively. Model predic-

tions estimated intestinal schistosomiasis to be more commonly distributed in wards found in

regions contiguous with Lake Victoria and Lake Tanganyika, while estimates for urogenital

schistosomiasis were more commonly distributed in wards further inland. Results of the study

further demonstrated that the methods of using a geospatial regression kriging approach to

estimate schistosomiasis prevalence in wards was suitable over other methods tested, where

the model using ZIP regression had a better fit than through use of Poisson regression, and

where adding kriging further improved the model fit. The study also found that routine and

publicly available data such as population density, stunting rate, distance to a lake, terrain rug-

gedness, vegetation, wetness, and use of improved water sources can be used to generate preva-

lence estimates of both types of schistosomiasis at a sub-district, ward level.

Fig 6. Comparing the implications of PC eligibility at a conventional district-level approach based upon school

survey results (left) with that of a ward level approach based on model estimates (right). District level treatments

needs were determined by a mean observed prevalence in school survey sites exceeding the 10% cutoff threshold, while

ward level treatment needs were estimated using geostatistical model predictions to supplement observed prevalence

from school surveys in wards where available. Map was created in QGIS 3.30.1 using open source shapefiles and spatial

data from GADM.org. Data were presented on open source base layers from the United States Geological Survey

(USGS).

https://doi.org/10.1371/journal.pntd.0011896.g006

Table 4. Implications for numbers of treatments needed from different methods of estimating prevalence. The surveyed data model looks at the number of treat-

ments needed when using conventional district level approach to MDA using results from the school surveys. ZIP and geospatial model estimate treatments using a more

targeted ward level approach enabled by creating estimates for all wards.

Model Unit Prevalence Schistosomiasis Wards Population SAC

Surveyed data District Mean observed Urogenital 155 2,965,000 877,000

Intestinal 268 4,840,000 1,447,000

Total* 423 7,249,000 2,172,000

Prediction model (ZIP) Ward Predicted (ecological risk) Urogenital 123 1,909,000 579,000

Intestinal 235 4,666,000 1,371,000

Total* 357 6,563,000 1,946,000

Geostatistical model (RK) Ward Predicted (ecological risk + observed prevalence) Urogenital 154 2,498,000 760,000

Intestinal 227 4,744,000 1,398,000

Total* 376 7,155,000 2,132,000

*Either urogenital or intestinal schistosomiasis to be treated for. Cut-off value for treatment eligibility: prevalence� 10%. SAC: School-Age Children, 5–15 y/o. Population
numbers were based on projected ward-level population density and regional age proportions [41].

https://doi.org/10.1371/journal.pntd.0011896.t004
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A key object of this study is to investigate the potential for reducing over and under-treat-

ment through a more targeted approach to MDA using modelled prevalence estimates. While

the overall number of treatments necessary to treat against either species of schistosomiasis

were similar in both ward level and district level approaches, the number of wards, and subse-

quently SAC, estimated to be over or under-treated were substantial. Figs 6 and 7 highlight

areas in which the model estimated wards that needed PC treatment where a district level

approach would not have provided it, resulting from the limited areas in which it is able to

hold precision mapping. Treating in endemic wards where MDA was not previously occurring

due to a lack of data would have a large health impact on populations affected, reducing local

transmission and likelihood of associated morbidities. Additionally, avoiding the over treat-

ment of wards helps control programs to conserve limited resources on costly MDA cam-

paigns while averting potential adverse drug events in communities that don’t need require

treatment, and better preserve trust between drug distribution programs and at risk popula-

tions. Regardless of the error associated with the precision of the model, the granular outputs

of ward level predictions allows for a critical appraisal of which wards to treat in the region

that has not previously existed for the Lake Zone.

Consistency between the geographic distribution patterns of model predictions for intesti-

nal and urogenital schistosomiasis prevalence with past research findings increased confidence

Fig 7. Overview of treatment status of each ward based upon the model estimates. The dark red wards represent

wards were not estimated to require treatment, however would be treated under a district level approach. Therefore,

they are labelled as “over-treatment” wards. The light red color shows wards that are predicted to be above the

treatment threshold but would not be treated under a district level approach, and therefor “under-treatment wards”.

The gray wards would be treated in both model-based targeted treatment approach and the conventional district level

approach, and non-shaded wards would not be treated in either. Map was created in QGIS 3.30.1 using open source

shapefiles and spatial data from GADM.org.

https://doi.org/10.1371/journal.pntd.0011896.g007
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in the model outputs, and subsequently, the study approach [29,59–61]. This study added to

an existing body of research demonstrating that the use of geostatistical modeling, specifically

using regression kriging, can be a suitable way of predicting the spatial pre-control distribution

of schistosomiasis [62,63]. Kriging can furthermore help for correcting for superfluous data

patterns that cannot be explained with existing data, thus normalizing predictions to make

them more accurate. This normalization, however, may also skew predictions closer to the

mean in areas of high burden, as seen in Fig 5 where no geostatistical model estimates were as

high as some of the observed wards. The comparison of different modeling approaches,

including Poisson regression and zero-inflated Poisson (ZIP) regression, showed regression

kriging to be the best of the examined methods for predicting schistosomiasis prevalence in

the study area. This further supports the use of geostatistical models and regression kriging in

future studies to add to existing surveillance data to improve upon the prediction of schistoso-

miasis prevalence. The relatively large sample size of the study, which included over 17,400

school-aged children from 223 wards, provided further confidence in the reliability of the

model predictions. The increasing use of precision mapping in Tanzania and other settings

will provide opportunities to replicate and build upon this study to create useful schistosomia-

sis prevalence predictions at the sub district level [5,37].

The ability to predict schistosomiasis prevalence at ward level could have important policy

implications for the control and management of schistosomiasis in a number of settings. As

the WHO now advocates for more targeted delivery of MDA at a sub-district level in spite of

the lack of available data that can guide such decision, it is a key moment to start integrating

tools that could facilitate control programs in more informed planning on where to allocate

limited resources for disease control [25]. Since the study shows that use of geostatistical mod-

els can provide a data-driven approach to guide ward-level MDA that is both feasible and esti-

mated to substantially reduce over- and under-treatment, public health officials and policy-

makers should investigate whether they can adopt such approaches in their respective settings.

Central disease control agencies and donors should further investigate the suitability of this

approach and provide guidance to facilitate national programs in making this large strategic

shift to more targeted MDA.

We recommend using this tool as an addition to existing precision mapping data to guide

targeted MDA in a pilot program where the precision of model predictions can further be eval-

uated. We offer these tools as a means to supplement expanded precision mapping efforts, and

in no way advocate for use of modeling as a replacement. Precision mapping could be executed

in a more cost effective way if geostatistics were accounted for during survey design, such as by

using a lattice and close pairs design, to systematically map disease burden in a larger area of

the country using fewer resources [29]. Model predictions should be used as a guiding compo-

nent in the decision making process in addition to other relevant data, like past reported PC

coverage, and cross sectoral collaborations with vector control and WASH interventions.

Given the non-static nature of schistosomiasis prevalence over time in a given setting, models

should be updated regularly with recent data, and preferentially used on a real time monitoring

platform where other relevant data sources can be viewed. Finally, we recommend further

investigation and continued improvement of regression kriging and geostatistical modeling

methods through future studies, as well as field evaluations of model performance. We recom-

mend subsequent evaluations to also investigate costing to better understand the financial ben-

efits or disadvantage of using this approach.

A limitation of this study was not accounting for past PC reported drug coverage in the

model. While past drug coverage is both relevant and has been demonstrated to be associated

with schistosomiasis prevalence, reported coverage was left out of the model because reported

drug coverage data from MDA campaigns have been shown to be highly variable in accuracy,
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often incorrectly describing the proportion of the target population that received the drug

[64–67]. Furthermore, this coverage data is reported at the district level, which even when

accurate, may not homogenously describe the wards within the districts. As the purpose of the

model was to be able to enable targeted coverage based upon ecological and socio-demo-

graphic risk for schistosomiasis infection, the researchers strived to use covariates with data

sources available at or below the ward level. Finally, none of the districts within the Lake Zone

regions in the study area were found to have completed the 5 rounds of effective MDA that

would provide an indication for not recommending further MDA campaigns per WHO guide-

lines [10,68].

In subsequent modeling, it will be important to find a way to account for past PC cover-

age, particularly when sub-district MDA starts to become more commonly used in Tanza-

nia. Further limitations of the study include the extraction and aggregation of data from

different sources with varying timeframes, scales and methods, which may have reduced the

accuracy of some of the predictions [31]. Additionally, the modeling approach used may

have led to an underestimation of standard errors in the ZIP model, however, since the

model did not exclude covariates based on their univariate associations, but rather the over-

all predictive accuracy of the model, it is unlikely this would have altered the variable com-

position of the geostatistical models. Because of this, care should be taken in interpretation

of associations of individual covariates with schistosomiasis prevalence. The use of proxy

variables and other variables indirectly associated with schistosomiasis prevalence may have

decreased validity and increased the chance of errors. The schools being sampled in a non-

random and not fully transparent way poses a risk to validity as well, though researchers

have stated that random selection of schools should be avoided due to the focal geographical

distribution of schistosomiasis [11]. Future studies can be enriched with additional infor-

mation from surveys (e.g., intensity of infection, co-infection with other NTDs, socio-eco-

nomic status, age, and sex), improved census data, and past MDA coverage data at ward

level.

In conclusion, the results from this study demonstrate that geostatistical predictive models,

specifically using regression kriging, can be a viable tool to supplement the existing decision

making process for schistosomiasis control programs to determine where to implement MDA

in Lake Zone, Tanzania, as well as other schistosomiasis endemic settings where these methods

can be replicated. These methods provide the capacity to guide interventions and facilitate

more targeted PC treatment at ward level. This in turn can mean a reduction of over and

under-treatment, particularly when guiding interventions to areas not previously receiving

treatment, something that can significantly improve the efficiency of disease control programs

and the health outcomes of communities that benefit from improved drug coverage. In addi-

tion to guiding the selection of MDA locations, prevalence predictions can be used to calculate

number of treatments needed and advise on where to conduct future precision mapping

efforts. In Tanzania, use of model outputs can help to circumvent the challenges of scarce

ward level prevalence data, limited surveillance capacity, and lack of feasibility in attempting

comprehensive precision mapping coverage at ward level. Going forward it will be important

to evaluate how effectively these models can predict prevalence, how to improve upon predic-

tive accuracy, and how to integrate the use of such models in existing systems so that they may

be added to the decision making arsenal to better control schistosomiasis.
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S2 Table. Descriptive statistics for socio-ecological variables across all wards.

(XLSX)

S3 Table. Comparative statistics for socio-ecological variables in sampled and unsampled

wards.
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S1 Fig. Proportion of ZIP-predicted intestinal SCH per ward.

(TIF)

S2 Fig. Proportion of ZIP-predicted urogenital SCH per ward.

(TIF)

S3 Fig. Connectivity map and histogram. A spatial weights file was generated iteratively to

determine the contiguity structure for each ward (threshold: 53597.2m; inverse distance with

power: 2; Euclidean distance; queen; order of contiguity: 1st; neighbors: max. 27; min. 1;

median: 15).

(TIF)

S4 Fig. Univariate Moran’s I graphs. Moran’s I for the ZIP prediction residuals for intestinal

(pseudo p-value of p = 0.001) and urogenital (pseudo p-value of p = 0.003) SCH.

(TIF)

S5 Fig. Spatial correlogram of urogenital SCH residuals. Max. distance = 350km. Zero auto-

correlation at 105km. Frequency indicates the number of pairs (total: 19857).

(TIF)

S6 Fig. Spatial correlogram of intestinal SCH residuals. Max. distance = 680km. Zero auto-

correlation at 141km. Frequency indicates the number of pairs (total: 24976).

(TIF)

S7 Fig. Residuals of ZIP-predicted intestinal SCH in a box map. Hinge = 1.5.

(TIF)

S8 Fig. Residuals of ZIP-predicted urogenital SCH in a box map. Hinge = 1.5.

(TIF)

S9 Fig. Semivariogram of GLM residuals for intestinal SCH. Spherical model with a partial

sill of 75; a range of 50,000m; and a nugget of 10.

(TIF)

S10 Fig. Semivariogram of GLM residuals for urogenital SCH. Spherical model with a par-

tial sill of 40; a range of 90,000m; and a nugget of 1.

(TIF)
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